
 

TPAXP-1 16-processor, Shared Memory 

MIMD Computer 

György Matakovics 

 

An usual method for Increasing the 

efficiency of a computer is to increase the 

performance of the processor; however, this is 

limited by current technology. Another 

possible solution is to disclose parallelism 

within a given task and to solve the task parallelly on more than one processor, or 

to run several application programs simultaneously on more than one processor 

in a multiuser operating system. The above said explains why multiprocessor 

computers are gaining more and more ground. This way of development is shown 

by large computer firms (IBM, DEC, Cray) as well as manufacturers of special 

computers of smaller series (Elxsi, Thinking Machines, BBN, Ncube, Encore, 

Convex, FPS). 

During the last five years, production of such computers increased yearly by 

an average of 26% while only by 5% in the mainframe category. Almost half of all 

installed mini/mainframe computer systems have parallel architecture by the end 

of 1991. This means that several processors work on one or more programs 

parallelly, thus increasing the system's throughput. Parallel systems are suitable 

for geophysical and molecular biology research, in the field of chemistry, circuit 

and other simulations, signal and image processing. Multiprocessor systems are 

also used in financial modelling and data base management. 

Parallel architectures have many advantages: 

modularity - using processor elements of the same type a wide range of 

performances can be covered, and, If the user's demands Increase, further 

processors can be added to the configuration, 



reliability - the system remains operable even if certain processor elements 

break down; 

super performance - this can be achieved by arranging a system parallelly: 

when the fastest possible processor Is made the next step is to Interface two of 

them, in other words to arrange a multiprocessor architecture; In the case of 

high-performance multiprocessor systems made from relatively cheap 

microprocessors a better price/performance ratio is obtained - except for the 

low-end category. 

Some problems of parallel processing systems 

The present multiprocessor systems can be classified by memory 

architecture Into three groups: 

Tightly coupled sytems - in such systems all processors share the same 

physical memory the whole of which is available for all processors; peripherals are 

available for all processors (occasionally indirectly). In tightly coupled systems the 

operating system (code and data structures) exists only in a single copy In the 

memory, which can be accessed by any other processor. In such shared-memory 

systems there Is no need for separate communication between processors 

because common variables are available for any processor by a memory reference 

Instruction realizing an implicit communication method. 

In snugly coupled systems (it is also called Nonuniform Memory 

Architecture) several processor cards (any of them can be a tightly coupled 

multiprocessor system) are Interfaced by a common bus; any processor has its 

own memory, which is not available for other processors; the global memory, 

which is accessible from each processor, is on a separate memory card. 

In loosely coupled systems several computers (any of them can be either a 

snugly or a loosely coupled multiprocessor system) are interfaced by a local 

network (e.g. Ethernet, hyper cube); it has not any common memory; peripherals 

Interfaced to a computer are usually available for any other ones. Any computer 

of this type has its own operating system but there is no global memory. 



In such local memory systems information exchange takes place explicitly, 

through a local network. If any processor needs calculation results from any other 

one, it should be mailed. The duration of communication is in the millisecond 

range, which is remarkably slower than that in a tightly coupled system. Here, 

each member of the system has its own operating system, which communicates 

through a common memory. Communication can take place either through a 

common data base (implicit) or in the form of message passing (explicit). 

From the viewpoint of programming, shared memory systems are 

advantageous because of implicit communication. Programmers do not have to 

pay extra attention to send results from processor to processor, they should only 

be aware that there will be a result by the time it is needed. In the present shared 

memory systems the main problem is caused by the access time of the memory 

being slower than the cycle time of the processor and thus in the case of the same 

memory unit there is no opportunity for two or three processors to operate 

concurrently. Namely, if there is a great number of processors a fast performance 

decrease happens as more and more processors want to reach the same memory 

unit (memory conflict) even if their traffic Is minimised by cache techniques. 

A further problem may be caused by the bandwidth of the interconnection 

between processors and memories because - depending on Its arrangement - a 

situation of collision can occur (interconnect conflict) which leads to further 

performance decrease. 

In local memory systems there is no memory conflict and thus they are 

allowed to consist of a great number of processors. However, they may also have 

some disadvantageous characteristics: none of the processors is able to 

communicate directly with any of the others. Complexity of the communication 

network is quadratically proportional to the number of processors. In order to 

achieve lower complexity the whole communication network is not usually 

realized Thus communication between processors becomes indirect, namely the 

data reach their destination through intermediate processors increasing thereby 



the length of communication. A further problem involved is that explicit 

communication increases software complexity thus decreasing performance. 

TPA XP-1 multiprocessor 

TPA XP-1 is a shared memory, tightly coupled multiprocessor system. Its 

processor hardware is of general purpose, it is not specialized for any use. Its 

flexible architecture enables all accessible processors to work together even in the 

case of a single application. 

Its architecture consists of 16 processors. The processors are completed by 

a floating-point coprocessor, which - by virtue of its high performance - may 

substitute the vectorprocessor. 64 Mbyte memory corresponds to each processor 

which is part of the global memory and is accessible for each processor. The large 

and high-performance crossbar memory system can be extended up to 1 Gbyte. 

The console subsystem of the computer provides customary console 

functions, serves diagnostic purposes, and performs error logging for the 

operating system. With its help the computer can be put into a remote diagnostic 

network in order to increase availability. 

Hardware 

Processor/memory interconnect 

In shared memory multiprocessor systems data traffic between processor 

and memory units takes place through an interconnect network. Several types of 

interconnects exist, e.g. bus, multiple bus, Multistage IN, Crossbar IN. Conflicts 

arising from the use of interconnect significantly decrease the resulting 

performance of the multiprocessor system. This shows why the type of 

interconnect should be considered thoroughly and optimized to data traffic and 

the number of processors. 

Crossbar Interconnect 

TPA XP-1 interfaces 16 processors and 16*64 Mbyte memory through two 

one-way crossbar networks. The whole memory is physically shared among 

processor elements, in order to simplify the use of the cache technique. The 



whole memory Is accessible for any processor, however, processors reach their 

own memory not through the crossbar interconnect, but in a local way. The 

processor-cache has an effect only on local accesses. The architecture consists of 

two one-way crossbar interconnects, one from the processor to the memories 

and another from the memories to the processors. Crossbar data paths are each 

40 bits wide in each direction with 32 data, parity and hand-shake lines. 

Processor 

MIPS R3000/R3010 type microprocessor is one of the best microprocessors 

due to its relatively low frequency (25-33 MHz), high scalar (20-27 MIPS), and very 

high floating-point DP Linpack performance (3.9 MFLOPS), its large cache memory 

size and multiprocessor support. The R3000 chip consists of a central processing 

unit, 32 registers each of 32 bits, a memory management unit, cache and memory 

controller logic, and manages 4 Gigabyte virtual address space. An R3010 tightly 

coupled floating coprocessor extends the R3000 by floating-point instructions and 

operates with single (32 bit) and double (64 bit) precision data format in 

accordance with IEEE standard 754. The processor unit of TPA XP-1 is built on 

R3000 which operates on 40 nsec cycle time. The 128 Kbyte cache memory (64 

Kbyte instructions, 64 Kbyte Data) operating by physical addresses consists of 

SRAMs of 20 nsec access time. The two caches work so that they overlap in time. 

This ensures 200 Mbyte/sec bandwidth of the cache, which is needed for the 

processor to work without waiting state. The cache memory is write-through, 

directly mapped. Automatic consistency is ensured only at data-cache. 

Instruction-cache consistency is ensured by software (cache flush). In order to 

increase the hit rate of the cache there is a 4-word, so called "look-ahead1' (block 

refill). "Instruction streaming" mode that enables the instruction to be performed 

at the time of l-cache refill. 

The connection between the processor and the memory is a 100 Mbyte 

bandwidth, synchronous local bus. The crossbar interface and the optional I/O 

interface are connected there. Total transfer bandwidth of interconnect is 1280 

Mbyte/sec by 16 node. With the help of the optional I/O interface the processor is 



able to manage peripherals through any standard I/O bus. At present VME, the 

most widely known I/O bus is used. 

The CPU card contains a 512 Kbyte Monitor program, which is burnt in 

EPROM. It contains power-up diagnostics and enables the CPU to operate under 

control (memory write/read, loading operation system, loading and starting 

standalone programs, etc.) 

Memory 

One memory module of XP-1 operating synchronously with the CPU is of 64 

Mbyte capacity by using 4 Mbyte dynamic memory units (DRAM). Using 25 MHz 

system clock frequency the VLSI programmable DRAM controller ensures a 160 ns 

access time. 

A memory module consists of four independent 16 Mbyte units. It is 

interleaved four times, namely there is an opportunity to read four words of 32 

bit each from sequential addresses. 

Error control is ensured by a 14/20 nsec EDAC (Error Detection And 

Correction) circuit - which is a basic safety requirement. It corrects single errors 

and signals multiple ones. 

Supervisory system 

The supervisory system monitors environmental conditions of the operation 

of TPA XP-1 multiprocessor and intervenes if necessary. It measures 

environmental temperature, the temperature difference between in- and 

outflowing air, the ventilation, the voltage level of the power supply units, the 

quality of the grounding system (ground current). 

Technology 

Circuit elements of TPA XP-1 multiprocessor are High-speed CMOS based. 

The 64 Mbyte memory and the processor module are mounted on a 12-layer 

printed circuit board. Their current supply is ensured by 48V/5V 30A DC/DC 

converters mounted on them. The back panel is assembled from both sides and 



has 14 layers. Interconnect cards are of 6 layers with a current supply ensured by 

the processor units. 

Software 

The operating system of the XP-1 computer is the multiprocessor version of 

the UNIX operation system. "Version" does not mean another (non-compatible) 

UNIX system, merely an adaptation of an existing (AT&T System V Release 4) 

system to the multiprocessor TPA XP-1 configuration. 

User requirements of adaptation: 

— Portability of programs 

Existing programs (application programs, compilers, libraries, etc.) should 

be able to be used in the adapted system without any modification. Adaptation 

should "hide" TPA XP-1 multiprocessor architecture from these programs. 

— Supporting of multiprocessor applications 

Adaptation should enable applications that explicity require a 

multiprocessor environment. Simple portability cannot be expected - as there are 

no standards -and System V adaptations tailored to other multiprocessor systems 

are regarded as a norm. 

— Hardware requirements of adaptation 

TPA XP-1 architecture is situated between tightly and loosely coupled 

systems, because the whole physical memory is available for each processor, but a 

part of the memory corresponds to any processor which seems to be local (from 

the point of view of access time). TPA XP-1 architecture Is symmetric: any of the 

processors can perform Input/output tasks. However, in practice more than one, 

occasionally two, input/output processors are needed. Hence XP-1 architecture 

becomes asymmetrical - at least from the point of view of the operating system. 

The operating system has thus to be prepared for the following cases: 

— Configuration is fully symmetric, each processor performs both input 

and output tasks. 



— Configuration is fully asymmetric, all input/output tasks are performed 

by single processor. It can be a "dedicated" input/output processor, 

which deals only with input/output operations. 

— Any quasisymmetric configuration between the two extreme cases. This 

means that the operating system should be dynamically reconfigurable. 

It requires the functional separating of the operating system kernel 

functions between processors. 

 

Kernel functions 

1. System calls 

System calls determine the surface of the operating system "visible" from 

the side of the application programs. Consequently, system calls determine the 

operating system (e.g. System V, its version, etc.). 

Serving the majority of system calls requires services from other functional 

areas (e.g. input/output, scheduling, etc.), however, system call definitions fully 

belong here. Bearing in mind the wide utilization of UNIX systems, the "natural" 

place of algorithms serving system calls is the local memory of each processor. 

This means that these algorithms exist In as many copies as there are processors. 

2. System services 

System services that are invisible to the user (or, which should be invisible, 

but are independent of the interface) belong here. 

System administration has both processor-dependent and independent 

functions. An example of the latter is the serving of hardware interrupts 

(excluding input/output Interrupts which are managed as separate functions). 

The case of processor-dependent functions is fairly unambiguous: 

interrupts can be software or hardware errors. Software errors (usually fatal 

ones) can arise either from the operating system (system crash) or application 

programs (program abort), their service is in no way time critical. The size of the 

service code determines whether it is worth storing it in a single copy (anywhere) 



or whether there is "enough space" for it in more than one copy, in the local 

memories of each processor. 

However, the serving of hardware errors is connected with the local memory: an 

interconnect error cannot be managed by a procedure whose code Is In a "remote" 

memory, and It would be reached only through the (faulty) Interconnect. 

The case of processor-Independent functions is not so simple and It Is Impossible to 

come to a final decision without performance investigations. A major difference from 

single-processor systems Is that resource management Is not restricted to one processor; 

balanced loading of processors should be ensured. Process migration with all its problems is 

inevitable. 

3. Input/output services 

Input/output procedures belong here; they are independent of the type of 

peripheral (class drivers). For example, in the case of each disc peripheral there Is a need for 

buffer management, but its algorithm is independent of the type of disc unit. These 

management functions also have their natural place: the local memory of processors to 

which the given type peripheral is interfaced. 

4. Peripheral management 

Here belong the procedures operating the peripherals directly (port drivers). The 

natural place of these procedures is the local memory of the processors to which the 

peripheral is Interfaced. 


